Effect of Additive on Solid State Reaction. II. A Thermoanalytical Study of the Effect of Fluorides on the Formation of MgAl₂O₄ in Initial Stage

Shiro Shimada, Ryusaburo Furuichi, and Tadao Ishii Department of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060 (Received July 9, 1973)

The promoting actions of fluoride on the formation of $MgAl_2O_4$ in the initial stage have been studied by means of DTA and high-temperature X-ray diffraction techniques. LiF, NaF, MgF₂, CaF₂ and BaF₂ were used as additives. The three MgO-Al₂O₃-fluoride (LiF, NaF or BaF₂) systems showed similar DTA curves; an endothermic peak (peak-1) in the temperature range 660—800 °C, followed by an exothermic peak (peak-2) at 700—900 °C. The DTA curves for MgO-Al₂O₃-fluoride (MgF₂ or CaF₂) systems showed no thermal change. It was found that peak 1 corresponds to Reaction (2), $3MF+2Al_2O_3=3MAlO_2+AlF_3$, and peak 2 to Reaction (1), $3MgO+2AlF_3=3MgF_2+Al_2O_3$, and the formation of MgAl₂O₄. It was concluded that Reaction (2) takes place before the formation of MgAl₂O₄ and that AlF₃ resulting from Reaction (2) initiates the formation of MgAl₂O₄.

In the preceding paper¹⁾ the promoting actions of fluorides and chlorides on the formation of MgAl₂O₄ were discussed from a kinetic viewpoint. Rate constants were obtained from isothermal experiments for determining the extent of promoting action. Some clues for the reaction mechanism such as a linear relation between the rate constant and electronegativity of cations of the halides were also obtained. However, it was not possible to see what kind of chemical reaction between the halide additives and reactants MgO and Al₂O₃ promotes the formation. DTA and high-temperature X-ray diffraction, both being non-isothermal techniques, are useful for clarifying the reaction over a wide temperature range and for finding the initiation temperature of the reaction. We have studied MgO-Al₂O₃-fluoride systems by the non-isothermal technique in order to find the chemical reaction between additive and reactant.

Experimental

Sample. α -Al₂O₃ and MgO samples were prepared by a method similar to that described.¹⁾ The particle size of sample was smaller than 44 μ for α -Al₂O₃ and ϵa . 0.1 μ for MgO. The fluorides used as additive were LiF, NaF, MgF₂, CaF₂ and BaF₂.

DTA Experiments. DTA experiments were carried out with a Thermoflex 8001 type apparatus (Rigaku-Denki). Before heating the sample, the apparatus was evacuated to approximately 10^{-1} mmHg and then filled with $\rm N_2$ of 300 mmHg to avoid the effect of water vapor in the air. Pt-Pt13Rh thermocouples were used for measuring the temperature, a heating rate of 10 °C/min being employed in all experiments. The sample weight was about 300 mg. $\alpha\text{-Al}_2\rm O_3$ of the same weight was taken as the standard material.

X-Ray Diffraction. A Geigerflex 2141 type diffractometer (Rigaku-Denki) was used for X-ray analysis of the samples obtained during DTA runs, the analysis being carried out with Ni-filtered CuKα, operation voltage 25 kV and current 10 mA. The fractional conversion of MgAl₂O₄ was determined by the quantitative X-ray analysis.¹⁾

High-temperature X-Ray Diffraction. A high-temperature A-4 type attachment (Rigaku-Denki) was used. The experiments were carried out in static N₂ of 300 mmHg at heating rate of 2—4 °C/min, operation voltage and current respectively 40 kV and 20 mA.

Results and Discussion

MgO-Al₂O₃-LiF System. The change of hightemperature X-ray diffraction intensities with the re-

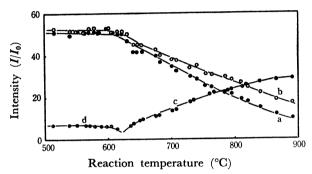


Fig. 1. High-temperature X-ray diffraction patterns of the reaction in MgO-Al₂O₃-LiF system. Molar mixing ratio: 1:1:0.2, Heating rate: 2—4 °C/min, in N₂ (300 mmHg).
a: α-Al₂O₃ (113), b: MgO (200), c: MgAl₂O₄ (400), d: LiF (200)

action temperature is shown in Fig. 1. Curve a: (113) line of α-Al₂O₃, Curve b: (200) of MgO, Curve c: (400) of MgAl₂O₄, Curve d: (200) of LiF. We see that MgAl₂O₄ begins to form simultaneously with the decrease of the reactants of MgO, α-Al₂O₃ and LiF near 630 °C, and that in the initial stage of the MgAl₂O₄ formation, the extent of the decrease in the X-ray intensity with temperature is larger for α-Al₂O₃ than for MgO. The shift of (200) diffraction line of LiF to the lower angle starts at a temperature near 400 °C. At 630 °C, the shift became 1°, and the diffraction line of MgAl₂O₄ appears. This shift indicates that LiF is strongly thermally expanded at the temperature of beginning of the formation of MgAl₂O₄.²⁾

Figure 2 shows DTA curves (A: 1:1:0.2 mixture of MgO, Al₂O₃ and LiF in molar ratio) and X-ray diffraction patterns of the samples heated up to temperatures corresponding to points a and b on Curve A. The curve shows one endothermic peak 1 in the range 660—690 °C and one exothermic peak 2 in 690—750 °C. The cycles of heating and cooling of the sample for Curve A give endothermic and exothermic changes at 780—790 °C, respectively (Curve B). The samples containing LiF (0.5 molar ratio) showed DTA curves similar to Curves A and B. The DTA curves of MgO–LiF, Al₂O₃–LiF and MgO–Al₂O₃ systems, however, showed no thermal changes in the range 20—1000 °C except for the endothermic peak due to melting of LiF. It thus seems that only the ternary system of MgO,

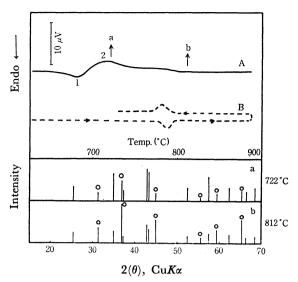


Fig. 2. DTA curve of the reaction in ${\rm MgO-Al_2O_3-LiF}$ system and X-ray diffraction patterns of the samples heated to a- and b-points. Heating rate: $10~{\rm ^{\circ}C/min}$, in ${\rm N_2}$ (300 mmHg), sample weight: 300 mg.

A: 1:1:0.2 mixture of MgO, Al₂O₃ and LiF in molar ratio, B: heating and cooling cycle of sample for Curve A, O: MgAl₂O₄

TABLE 1. THERMODYNAMIC DATA^{a)}

$\Delta H^{\circ} = 73 \text{ kcal/mol}$
$\Delta H^{\circ} = 76 \text{ kcal/mol}$
$\Delta H^{\circ} = 111 \text{ kcal/mol}$
$\Delta H^{\circ} = 210 \text{ kcal/mol}$
$\Delta H^{\circ} = \text{unknown}$
$\Delta H^{\circ} = 30 \text{ kcal/mol}$
$\Delta H^{\circ} = 53 \text{ kcal/mol}$
$\Delta H^{\circ} = 18 \text{ kcal/mol}$
$\Delta H^{\circ} = 34 \text{ kcal/mol}$
$\Delta H^{\circ} = -140 \text{ kcal/mol}$
$\Delta H^{\circ} = -243 \text{ kcal/mol}$
$\Delta H^{\circ} = -9.1 \text{ kcal/mol}$

a) From Ref. 7.

 Al_2O_3 and LiF shows peaks 1 and 2 (Curve A, Fig. 2). Peak 2 is probably related to the formation of MgAl₂O₄, since MgAl₂O₄ is formed at point a after peak 2 and ΔH° of this spinel formation is -9.1 kcal/mol (Table 1). At point b, a large amount of MgAl₂O₄ is also found to be formed. The reversible thermal changes of Curve B may be due to the formation of the liquid phase by the reaction in MgO-Al₂O₃-LiF system.

 $MgO-Al_2O_3-NaF$ System. Figure 3 shows the results of high-temperature X-ray analysis for the reaction of $MgO-Al_2O_3-NaF$ system. The initiation of formation of $MgAl_2O_4$ is seen at 720 °C, a rapid increase in its amount with the rapid decrease in that of MgO and Al_2O_3 being observed. The temperature dependency leads to a large activation energy for the ΔH^* value formation of $MgAl_2O_4$. This is consistent with a ΔH^* value large (activation enthalpy). The thermal expansion of NaF is considered to be significant at 720 °C, since the large shift of diffraction line (200) to the

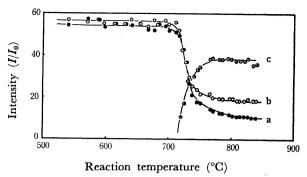


Fig. 3. High-temperature X-ray diffraction patterns of the reaction in MgO-Al₂O₃-NaF system. Molar mixing ratio: 1:1:0.2, Heating rate: 2—4 °C/min, in N₂ (300 mmHg). a: α -Al₂O₃ (113), b: MgO (200), c: MgAl₂O₄ (400)

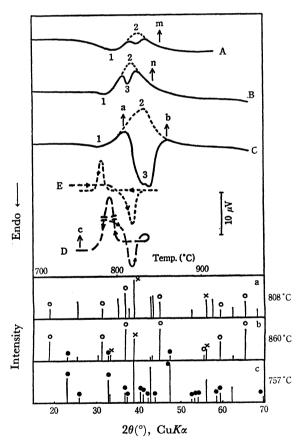


Fig. 4. DTA curves of the reaction in MgO-Al₂O₃-NaF system and X-ray diffraction patterns of the samples heated to a-, b- and c-points. Heating rate: 10 °C/min, in N₂ (300 mmHg), sample weight: 300 mg.

A: 1:1:0.1 mixture of MgO, Al₂O₃ and NaF in molar ratio, B: 1:1:0.2 mixture, C: 1:1:0.8 mixture, D: 1:1 mixture of MgF₂ and NaF in weight ratio, E: heating and cooling cycle of sample for Curve C

 \bigcirc : MgAl₂O₄, ×: NaF, \blacksquare : NaMgF₃ m: α=60%, n: α=55%

lower angle with temperature, similar to the case of LiF, was also observed for NaF.³⁾

Figur 4 shows DTA curves and X-ray diffraction patterns of samples heated up to temperatures corresponding to points a, b and c on Curves C and D. The molar mixing ratios of MgO, Al₂O₃ and NaF for Curves A, B and C are: A, 1:1:0.1; B, 1:1:0.2; C, 1:1:0.8. Curve D was obtained from the 1:1 binary mixture (weight ratio) of MgF₂ and NaF, and Curve E from the sample used for Curve C after it had been heated up to 960 °C. Each curve of MgO–Al₂O₃–NaF systems shows an endothermic peak 1 in the range 760—795 °C and the overlap of an exothermic peak 2⁴) with an endothermic peak 3. The DTA curves of binary systems such as MgO–NaF and Al₂O₃–NaF showed no thermal change except for the melting of NaF.

The fractional conversions of MgAl₂O₄ for the samples heated up to 852 °C (point m) on Curve A and up to 842 °C (point n) on Curve B were estimated to be $\alpha = 60\%$ and 55%, respectively. Comparable α values imply that the amount of MgAl₂O₄ produced does not necessarily depend on the amount of NaF added. The area of peak 2 seems to increase with the amount of NaF, suggesting peak 2 to contain another exothermic reaction in addition to MgAl₂O₄ formation. From X-ray diffraction patterns (Fig. 4), the presence of NaMgF₃, a complex compound formed from NaF and MgF₂,5) is observed in addition to MgAl₂O₄ at point b on Curve C. Thus, it can be assumed that the exothermic peak 2 is due to the formation of MgAl₂O₄ and MgF₂. Peak 3 is considered to be due to the formation of liquid phase, since the cycles of heating and cooling of the sample for Curve C give endothermic and exothermic changes (Curve E). The two peak temperatures in Curve E are in agreement with those in Curve D obtained from MgF₂-NaF mixture, the temperatures being near the eutectic temperature of NaMgF₃ and NaF.⁶⁾ Thus, peak 3 might correspond to the melting of the mixture of NaMgF₃ and NaF. The results show that MgF₂ is formed in the MgO-Al₂O₃-NaF system, but not in the MgO-NaF system.

 $MgO-Al_2O_3-BaF_2$ System. The results of high-temperature X-ray diffraction of this system are shown in Fig. 5. BaF₂ begins to decrease at ca. 680 °C (Curve d), and subsequently MgAl₂O₄ and BaAl₂O₄ begin to form near 700 °C (Curves c and e) with the simultaneous decrease of MgO and α -Al₂O₃ (Curves b and a). BaAl₂O₄ could be formed from the reaction of BaF₂ with α -Al₂O₃.

Figure 6 shows DTA curve (A: 1:1:0.5 mixture of MgO, Al₂O₃ and BaF₃ in molar ratio) and X-ray diffraction patterns of sample heated up to 870 °C (point a). Curve A shows similar thermal behaviors; a small endothermic peak 1, followed by an exothermic peak 2. DTA curves for the binary system of MgO–BaF₂ and Al₂O₃–BaF₂, however, showed no thermal change in the range 20—1100 °C. The cycles of heating and cooling of the sample for Curve A show no thermal change either. MgAl₂O₄ and BaAl₂O₄ were found to form at point a and the fractional conversion of Mg-

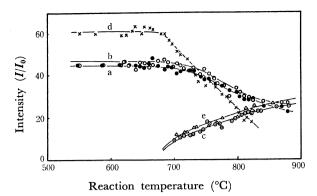


Fig. 5. High-temperature X-ray diffraction patterns of the reaction in MgO-Al₂O₃-BaF₂ system. Molar mixing ratio: 1:1:0.2, heating rate: 2—4 °C/min, in N₂ (300 mmHg).

a: α -Al₂O₃ (113), b: MgO (200), c: MgAl₂O₄ (400), d: BaF₂ (220), e: BaAl₂O₄ (112)

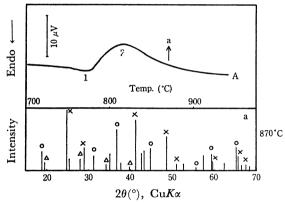


Fig. 6. DTA curve of reaction in MgO-Al₂O₃-BaF₂ system and X-ray diffraction patterns of the samples heated to a-point. Heating rate: 10 °C/min, in N₂ (300 mmHg), sample weight: 300 mg.

A: 1:1:0.5 mixture of MgO, Al₂O₃ and BaF₂ in molar ratio

 \triangle : BaAl₂O₄, \times : BaF₂, \bigcirc : MgAl₂O₄ a: α =63%

 Al_2O_4 was 63%. Thus peak 2 is related to the formation of MgAl₂O₄.

 $MgO-Al_2O_3-MgF_2$ System. The high-temperature X-ray diffraction data are shown in Fig. 7. MgAl₂O₄ begins to form near 835 °C (Curve c) accompanied by the decrease of MgO, α -Al₂O₃ and MgF₂ (Curves b, a and d). The DTA curves in the MgO-Al₂O₃-MgF₂ and MgO-Al₂O₃-CaF₂ systems showed no thermal change in the range 20—1100 °C.

The Reaction of Fluorides with MgO and α - Al_2O_3 . Peak 2 in Fig. 4 (MgO-Al₂O₃-NaF system) was found to correspond to the reaction, MgO+Al₂O₃=MgAl₂O₄ with ΔH° =-9.1 kcal/mol, and to another extra exothermic reaction which seems to be MgF₂ formation from MgO and fluoride from the results of X-ray and DTA experiments. It was also found that the systems containing LiF (Fig. 2) and BaF₂ (Fig. 6) showed two peaks on the DTA curves similar to those of MgO-Al₂O₃-NaF system. Thus, peak 2 on the DTA curves of the systems containing LiF and BaF₂ is also assumed

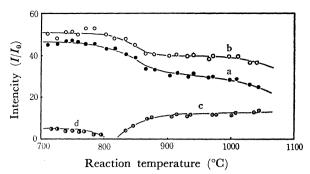


Fig. 7. High-temperature X-ray diffraction patterns of the reaction in MgO-Al₂O₃-MgF₂ system. Molar mixing ratio: 1:1:0.2, heating rate: 2—4 °C/min, in N₂ (300 mmHg).

a: α -Al $_2$ O $_3$ (113), b: MgO (200), c: MgAl $_2$ O $_4$ (400), d: MgF $_2$ (111)

to be due to the formation of MgF₂ and MgAl₂O₄, the latter being confirmed by X-ray analysis.

Three possible reactions, those of MgO with MF, AlOF or AlF₃, can be considered for MgF₂ formation (Table 1). However, the reactions of MgO with MF and AlOF can be excluded, since ΔH° , the heat of the reaction of MgO with MF is positive, viz., endothermic and experimental evidence for AlOF formation at temperatures below 1700 °C has not been reported.⁸⁾ Thus, it is reasonable to assume that MgF₂ is formed by the reaction

$$3MgO + 2AlF_3 = 3MgF_2 + Al_2O_3$$
 (1)

where AlF₃ is endothermally formed from Al₂O₃ and fluoride (Table 1). Thus the endothermic peak 1, which precedes peak 2, would be due to the reaction of α -Al₂O₃ with fluoride. On the other hand, the binary systems, Al₂O₃-fluoride, showed neither thermal changes in DTA curves nor X-ray diffraction lines of AlF₃. The results lead to an assumption that AlF₃ is formed from Al₂O₃ and fluoride in the presence of MgO in the temperature range 20—1000 °C. The reactions considered possible for peak 1 are as follows.

$$2Al_2O_3 + 3M^{T}F \xrightarrow{MgO} 3M^{T}AlO_2 + AlF_3$$
 (2)

$$4Al_2O_3 + 6M^IF \xrightarrow{MgO} 3M_2^IAl_2O_4 + 2AlF_3$$
 (2')

$$4Al_2O_3 + 3M^{II}F_2 \xrightarrow{MgO} 3M^{II}Al_2O_4 + 2AlF_3$$
 (3)

Formation of $M^{II}Al_2O_4$ was observed in the $BaF_2-Al_2O_3-MgO$ system ($BaAl_2O_4$), and $NaAl_{11}O_{17}$, assumed to result from $M_2{}^IAl_2O_4$ ($Na_2Al_2O_4$) and Al_2O_3 , was found in $NaF-Al_2O_3-MgO$ system when NaF was sandwiched between MgO was Al_2O_3 pellets.¹⁾

AlF₃ was not found in any system examined directly by X-ray. This might be due to the small amount of fluoride additives and the easily occurring sublimation of AlF₃.⁹⁾ In order to examine the effects of AlF₃ resulting from Reaction (2)—(3), experiments were carried out for MgO-Al₂O₃-AlF₃ and MgO-AlF₃ system. Figure 8 shows DTA curves (A: MgO-Al₂O₃-AlF₃ system; B: MgO-AlF₃ system) and X-ray diffraction patterns. AlF₃·H₂O used as starting material was subjected to dehydration in order to obtain anhydride AlF₃

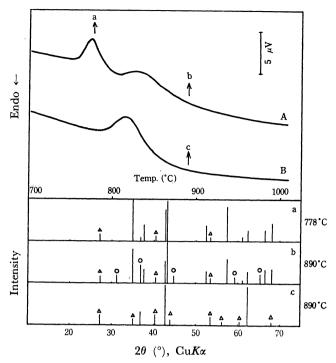


Fig. 8. DTA curves of the reaction in MgO-Al₂O₃-AlF₃ and MgO-AlF₃ systems, and X-ray diffraction patterns of the samples heated to a-, b- and c-points. Heating rate: 10°C/min, in N₂ (300 mmHg), sample weight: 300 mg.

 \bigcirc : MgAl₂O₄, \triangle : MgF₂ a: α =0, b: α =32%

at 200—300 °C. MgO-AlF₃ system (Curve B) shows an exothermic peak due to Reaction (1) at 790—850 °C, since X-ray analysis indicated the formation of MgF₂ after this peak (point c). Curve A shows two exothermic peaks in the ranges 750—800 °C and 800—870 °C; the first corresponds to the exothermic peak on Curve B since only MgF₂ is formed at point a on Curve A; the second peak might be due to the formation of MgAl₂O₄, since MgAl₂O₄ was found to form at point b. It is thought that two exothermic peaks on Curve A can be associated with reaction of the exothermic peak 2 (Figs. 2, 4 and 6). The conversion of MgAl₂O₄ at point b (890 °C) was estimated to be $\alpha=32\%$. This

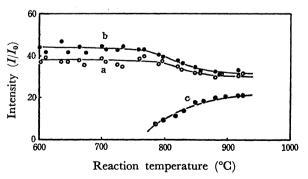
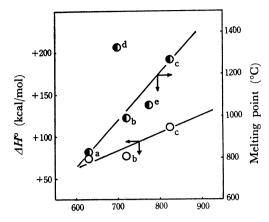
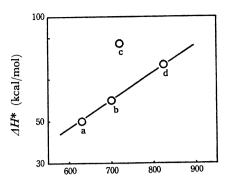



Fig. 9. High-temperature X-ray diffraction patterns of the reaction in MgO-Al₂O₃-AlF₃ system. Molar mixing ratio: 1:1:0.2, heating rate: 2—4 °C/min, in N₂ (300 mmHg).

a: α -Al₂O₃ (113), b: MgO (200), c: MgAl₂O₄ (400)

Initiation temperature of reaction (°C)


Fig. 10. Plots of ΔH° for the reactions in Table 1 and the melting points of fluorides vs. the initiation temperature of MgAl₂O₄ formation.

a: LiF, b: NaF, c: MgF₂, d: BaF₂, e: AlF₃

is comparable with $\alpha=20-30\%$, the values corresponding to the rapid MgAl₂O₄ formation observed in the initial stage of isothermal experiments.¹⁾ It seems from the data of MgO-Al₂O₃-AlF₃ (Fig. 9) that the presence of AlF₃ promotes the formation of MgAl₂O₄ as much as alkali and alkaline earth fluorides.

The formation of MgAl₂O₄ might be initiated by the presence of fluorides which form AlF₃ (Eqs. (2) and (3)), although each fluoride gives different initiation temperatures (Fig. 10). We see that the lower the value of ΔH° for Eqs. (2) and (3), the lower the initiation temperature of MgAl₂O₄ formation which can be determined by the high-temperature X-ray diffraction. We also see that the lower the melting point of the fluoride¹⁰⁾ except for point d (BaF₂), the lower the initiation temperature. This seems to be correlated to the strong thermal expansion of the crystalline lattices of LiF and NaF: the thermal vibration of these fluorides lattices is enhanced by the rise in temperature, and the exchange reaction between F- and O-2 on the surface of α-Al₂O₃ and/or MgO particles occurs to form AlF₃. This might influence the surface of α-Al₂O₃ and MgO particles and causes the reaction between MgO and α-Al₂O₃ leading to the formation of MgAl₂O₄. The deviation of point d from the straight line (Fig. 10) cannot be explained at present.

The cations of fluoride play an important role in the enhancement of diffusion rate.¹⁾ If the activation enthalpy (Table 2, Ref. 1) can be taken as a relative

Initiation temperature of reaction (°C)

Fig. 11. Plots of activation enthalpy ΔH* vs. the initiation temperatures of MgAl₂O₄ formation.
a: LiF, b: BaF₂, c: NaF, d: MgF₂

measure of the ease of the occurrence of reaction, it is expected that the smaller the activation enthalpy, the lower the initiation temperature of the formation of MgAl₂O₄. This is satisfied in Fig. 11 except for point c. Accordingly, it can be assumed that the initiation temperature of MgAl₂O₄ formation is lowered by the incorporation of Reactions (1), (2) and (3) with the reaction between MgO and α-Al₂O₃.

References

- 1) S. Shimada, R. Furuichi, and T. Ishii, This Bulletin, 47, 2026 (1974).
- 2) The shift at 630 °C calculated by using the coefficient of expansion of LiF, $\alpha = 3.4 \times 10^{-5}/K^{11}$ turned out to be 0.9°, which is comparable with the observed value.
- 3) The shift at 650 °C calculated by using $\alpha = 3.6 \times 10^{-5}/K^{11}$, 1.0 was comparable with the observed value 0.7.
- 4) Peak 2 (dotted line) was drawn by assuming that it resulted from the reaction of $2AlF_3 + 3MgO = 3MgF_2 + Al_2O_3$ (Table 1).
- 5) A. F. Wells, "Structural Inorganic Chemistry," Oxford (1962), p. 360.
- 6) G. Gruve and H. Henne, Z. Electrochem., 36, 129 (1930).
- 7) Horigoshi Institute, "JANAF Thermochemical Tables," Vol. 1, 3 (1965).
- 8) M. Farber and H. L. Petersen, Trans. Faraday Soc., 59, 836 (1963).
- 9) P. J. Durrant and B. Durrant, "Advanced Inorganic Chemistry," Longman, London (1970), p. 570.
- 10) G. J. Jang, "Molten Salts Handbook," Academic
- Press, New York (1967), p. 2. 11) W. A. Wooster, "A Text-book on Crystal Physics," Cambridge (1938), p. 33.